Application of Ant Colony Optimization for the Risk Management of Wind Damage in Forest Planning
نویسندگان
چکیده
Ant colony optimization (ACO) is still quite a new technique and seldom used in the field of forest planning compared to other heuristics such as simulated annealing and genetic algorithms. This work was aimed at evaluating the suitability of ACO for optimizing the clear-cut patterns of a forest landscape when aiming at simultaneously minimizing the risk of wind damage and maintaining sustainable and even flow of periodical harvests. For this purpose, the ACO was first revised and the algorithm was coded using the Visual Basic Application of the ArcGIS software. Thereafter, the performance of the modified ACO was demonstrated in a forest located in central Finland using a 30-year planning period. Its performance was compared to simulated annealing and a genetic algorithm. The revised ACO performed logically since the objective function value was improving and the algorithm was converging during the optimization process. The solutions maintained a quite even periodical harvesting timber while minimizing the risk of wind damage. Implementing the solution would result in smooth landscape in terms of stand height after the 30-year planning period. The algorithm is quite sensitive to the parameters controlling pheromone updating and schedule selecting. It is comparable in solution quality to simulated annealing and genetic algorithms.
منابع مشابه
Design and analysis of hybrid systems solar, wind, osmotic for green plants using ant colony optimization algorithm
Nature has always proven that it is able to overcome its problems. However, human manipulation has led to environmental degradations. The dryness of a thousand-year Urmia Lake (a brinewater lake in Iran) is an example of environmental degradation that happened due to successive droughts and construction of dams on the basin of this lake. This study examines methods for the revival of Urmia Lake...
متن کاملANT COLONY SEARCH METHOD IN PRACTICAL STRUCTURAL OPTIMIZATION
This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with pr...
متن کاملACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem
The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...
متن کاملUsing Ant Colony Optimization Metaheuristic in Forest Transportation Planning
Timber transportation is one of the most expensive activities in forest operations. Traditionally, the goal of forest transportation planning has been to find the combination of road development and harvest equipment placement that minimizes total harvesting and transportation costs. However, modern transportation problems are not driven only by economics of timber management, but also by multi...
متن کاملA hybrid ant colony optimization algorithm to optimize capacitated lot-sizing problem
The economical determination of lot size with capacity constraints is a frequently complex, problem in the real world. In this paper, a multi-level problem of lotsizing with capacity constraints in a finite planning horizon is investigated. A combination of ant colony algorithm and a heuristic method called shifting technique is proposed for solving the problem. The parameters, including the co...
متن کامل